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The evolution of large insect societies is a major evolutionary

transition that occurred in the long-extinct ancestors of

termites, ants, corbiculate bees, and vespid wasps.

Researchers have long used ‘social ladder thinking’: assuming

progressive stepwise phenotypic evolution and asserting that

extant species with simple societies (e.g. some halictid bees)

represent the ancestors of species with complex societies, and

thus provide insight into general early steps of eusocial

evolution. We discuss how this is inconsistent with data and

modern evolutionary ‘tree thinking’. Phylogenetic comparative

methods with broad sampling provide the best means to make

rigorous inferences about ancestral traits and evolutionary

transitions that occurred within each lineage, and to determine

whether consistent phenotypic and genomic changes occurred

across independent lineages.
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Introduction
Insect eusociality — commonly defined by reproductive

division of labor, cooperative brood care, and overlapping

generations [1–3] — has a scattered distribution across

aphids, beetles, and thrips, but is especially common in

the traditionally recognized social insects; termites, ants,

corbiculate bees, and vespid wasps [4]. The most complex

forms of eusociality (labeled ‘advanced eusociality’, ‘obligate

complex eusociality’, ‘hypersociality’, ‘superorganismality’)

[1,5], characterized by strong queen-worker dimorphism and

colonies made up of dozens to millions of individuals evolved

in only these four lineages: approximately 150 million years

ago in the termites [6], 150 mya in the ants [7], an estimated

87 mya in the corbiculate bees [8], and at least 80 mya in the

vespid wasps [9]. Societies with less complex forms of
www.sciencedirect.com 
eusociality (often labeled ‘primitive eusociality’, ‘incipient

eusociality’ [2,10,11]) characterized by no or very little

queen-worker dimorphism and colonies usually made up

of a few to dozens of individuals also evolved independently

in several other hymenopteran lineages, including 45 mya in

xylocopine bees [2,12], at least twice independently 35 and

20 mya in halictid bees [13,14], as well as in stenogastrine and

Microstigmus wasps [15].

Researchers have long asserted that studying extant

species with relatively simple forms of eusociality can

provide general insight into the initial steps of eusocial

evolution that likely occurred in the long-extinct ances-

tors of lineages with more complex forms of eusociality.

For example, Evans [16] developed a hypothetical

scenario of 13 phenotypic steps for vespid wasp sociality,

or “rungs of a social ladder” [16], by arraying known

extant wasp species into a putative evolutionary series

based on their phenotypes. He posited that the ancestors

of extant vespid wasps passed through this series of

transitional forms during the evolutionary origin and

elaboration of eusociality [16,17]. Similarly, Haskins

and Haskins [18] and Haskins [19] proposed that ant

researchers might be able to elucidate early stages of

ant social evolution by studying extant ant species in

genera such as Myrmecia, Nothomyrmecia, and Amblyopone,
which were previously believed to be morphologically

and behaviorally ‘primitive’, and also phylogenetically

‘basal’ (i.e. sister to the rest of ants) [20].

We refer to this line of reasoning and general approach as

‘social ladder thinking’. As we describe below, social

ladder thinking remains very widespread throughout

the social insect literature, including in comparative

genomic research. Social ladder thinking appears to have

strongly impacted conceptualizations of social insect

evolution, which in turn have shaped research questions,

research approaches, and the interpretation of research

results. We critically discuss the underlying assumptions

of the social ladder approach, which are often only made

implicitly, and we contrast it with ‘tree thinking’ [21,22],

based on modern evolutionary biology, in particular

phylogenetic comparative methods [23–26].

Social ladder thinking remains widespread in
social insect research
The notion that steps in evolutionary transitions to

complex eusociality can be elucidated by studying extant

species considered to have ‘primitive’ or ‘transitional’

phenotypes (e.g. some halictid and xylocopine bees, some
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polistine wasps) continues to be very broadly embraced,

including in the context of comparative genomic and

transcriptomic studies [11,27], and has been discussed

in terms of the social ladder hypothesis, after Evans [16]

and Evans and West-Eberhard [17]. For example, Rehan

and Toth [11] states that “primitively eusocial species are

useful for elucidating transitions”, and Dew et al. [28]

asserts, “Facultatively social species allow for empirical

examination of the factors underlying evolutionary transi-

tions between primitive and complex forms of sociality”.

Other researchers [29–31], acknowledging that it is

impossible to directly study the evolution of traits that

evolved millions of years ago, explicitly argue that a

powerful workaround is to pick an extant ‘ancestor proxy’

species that has certain ancestral traits (e.g. solitary life

history) and assume that it is a living representative of the

long-extinct ancestor of a second extant, phylogenetically

related species with certain derived traits (e.g. complex

eusociality). Comparisons between the two extant species

are then made as a means to elucidate the evolution and

molecular underpinnings of the derived trait(s) [29–31].

We note that this approach immediately begs the ques-

tion of which extant species might be a good (or the best)

ancestor proxy, given that any evolutionary or genetic

inferences may strongly depend on the specific choice,

since species often vary widely due to local adaptation,

historical contingency, and so on.

While studying species with relatively simple societies to

elucidate the evolution of species with more complex

forms of eusociality may appear to be a very intuitive and

attractive approach, we suggest that this approach is

potentially problematic for several reasons. First, the idea

that one extant species or lineage is generally phenotypi-

cally ‘primitive’ or ancestral and reflects the ancestor of

a second more phenotypically ‘advanced’ or derived

species is a widespread evolutionary misconception that

is referred to as the ‘primitive lineage fallacy’ [32,33].

Briefly, terms such as ‘ancestral’ and ‘derived’ are only

meaningful when applied to specific character states in a

given phylogenetic context. All extant species or lineages

possess mixtures of ancestral and derived character states

and no extant species or lineage is generally ‘primitive’ or

‘ancestral’ relative to another lineage [21,32–34].

That said, such an approach could still be more-or-less valid

if one strong assumption was true: that there is a more-or-

less constrained phenotypic trajectory (i.e. a single ‘social

ladder’) going from solitary life to complex eusociality that

was consistently followed across independent origins of

eusociality (Figure 1a,b). If this assumption was true,

different lineages would be expected to follow similar

phenotypic trajectories; and moreover, different species

representing the same ‘step’ (regardless of phylogenetic

relationship) along the constrained path might be directly

comparable among each other, even if one was extant and
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one was long extinct. Furthermore, if this assumption was

true, then all species with phenotypically similar forms of

eusociality (e.g. all species classified as being ‘primitively

eusocial’), might have experienced similar causal genetic

changes, as a result of passing through the same predictable

evolutionary steps (i.e. rungs on a ‘social ladder’). These

genomic similarities underlying the evolution of social

complexity might then be predicted by some aspect

of phenotypic resemblance (e.g. as characterized by the

traditional categories of sociality; subsociality, primitive

eusociality, advanced eusociality), regardless of the details

of evolutionary history or phylogenetic independence,

natural history, specific traits involved, etc. [35–37].

Whether the signal of these genomic similarities would

actually be empirically detectable is another issue.

Empirical and theoretical reasons to doubt
social ladder thinking
However, there are several compelling reasons to think

that this assumption is not correct. In general, phenotypic

evolution is not thought to be strongly constrained in such

a way that a predictable and stepwise trajectory is consis-

tently followed across independent lineages. Indeed,

phenotypic evolution within a lineage usually does not

occur along a linear path, but instead, many alternate

combinations of traits are explored over evolutionary time

in a bush-like fashion, often involving historical contin-

gency (Figure 1c,d) [38,39]. This general conclusion is

also supported by studies seeking to formally test the

question of whether similar paths through phylomorpho-

space have been taken during the evolution of convergent

morphology [40]. Patterns of social complexity within and

among extant eusocial lineages also point away from a

single predictable route that was consistently followed.

For example, the diversity of trait combinations and life

histories among extant species classified as having primi-

tive or facultative eusociality demonstrates that there are

many alternate ways to make a living as a simple eusocial

species, and careful empirical studies of these species

suggest an array of distinct, perhaps lineage-specific

selective benefits and costs to eusocial life [10,41–47].

Similarly, extant species with phenotypically complex

forms of eusociality also show a diverse array of combina-

tions of traits associated with social complexity (e.g.

colony size, degree of queen-worker dimorphism, number

of worker subcastes, number of pheromones and exocrine

glands, etc.), suggesting that an array of possible trait

combinations and phenotypic evolutionary trajectories

existed historically [48–51]. Available comparative geno-

mic studies also support the conclusion that independent

origins of eusociality largely involve distinct genetic

changes [37].

Notably, lineages with species classified as having

relatively simple forms of eusociality often seem to have

maintained similar degrees of social complexity for tens of

millions of years [12,52]. These results indicate that
www.sciencedirect.com
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(a) According to a social ladder conceptualization, populations are assumed to transition progressively through a stepwise sequence of

phenotypic categories [11,16] along a more-or-less linear trajectory through trait space. Here, we visualize trait space as two axes of social

complexity (e.g. log colony size on the X-axis and a continuous measure of the complexity of the caste system on the Y-axis), but additional traits

(e.g. number of social signals) could be used to quantify social complexity, so that in reality the relevant trait space is multidimensional. Note that

the phenotypic categories have various alternate definitions and labels in the literature, and there has also been renewed discussion about

whether the ancestors of eusocial lineages were always subsocial at some point, as illustrated here [1,2,10]. (b) Social ladder thinking seems to

assume that all populations would fit on a highly constrained evolutionary trajectory (dashed arrow) through trait space, so that populations can

only move up (or down in some cases [11]) the trajectory, corresponding to an overall increase (or decrease) in social complexity. Extant groups

(e.g. various apid bee genera, illustrated here) at different locations in trait space are then assumed to reflect different stages of social evolution

[11,16]; the ancestors of groups with higher social complexity is assumed to have historically passed through locations in phenotypic space

occupied by groups with lower social complexity; and extant groups with lower social complexity are assumed to reflect the ancestor of groups

with higher social complexity [30,31]. Note that in reality, the apid groups illustrated here vary widely in measures of social complexity, so that for

example, the illustrated location of Melipona in trait space might reflect the location of a single species or the genus mean, but other related

species and genera would likely be in different regions of trait space. This suggests that at best, extant groups might only somewhat lie on a

linear trajectory that might only somewhat reflect historical evolutionary trajectories. (c) If the actual phenotypic trajectories that were taken

historically by the ancestors of each group of extant apid bee genera could be inferred and plotted (e.g. with a phylophenospace approach [40]),

we hypothesize that they would resemble something like the branching pattern illustrated here, and not a constrained linear trajectory. (d) If

additional groups (e.g. ants, halictid bees) are also added, we would expect to observe lineage-specific patterns. Note that the ancestors of

groups with relatively high social complexity still presumably historically passed through lower levels of social complexity, as illustrated by the

colored regions in trait space. However, we hypothesize that in contrast to a strict social ladder conceptualization, the convergent evolution of

social complexity involved many alternate paths (e.g. compare the imagined paths of the ancestors of Atta and Eciton), so that extant groups with

lower levels of social complexity are only superficially similar to the ancestors of extant groups with higher social complexity. We also note that

this superficial similarity is also likely to decrease as more and more traits (including those unrelated to social complexity) are considered.
extant species and lineages with relatively simple forms

of eusociality should be understood as having successful

alternate life history strategies when compared to extant

species with more complex forms of eusociality. These
www.sciencedirect.com 
results are not consistent with the notion that species

with relatively simple forms of sociality are in any way

transitional or on their way to evolving more complex

forms of eusociality.
Current Opinion in Insect Science 2019, 34:123–129
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Thus, we believe that there is little theoretical or empirical

reason to think that there is a single phenotypic route

involving predictable evolutionary changes (i.e. a ‘social

ladder’) across independent origins and elaborations of

eusociality, and there is also little theoretical or empirical

reason to think that extant species with simple forms of

eusociality are representative of the ancestors of extant

lineages with complex eusociality. At the least, we argue

that the idea of a single stepwise phenotypic trajectory from

simple to complex societies should be treated as a hypoth-

esis that researchers should seek to evaluate empirically in

comparison toalternate hypotheses (Figure 1), for example,

using formal phylogenetic comparative approaches [40].

Overall, we believe that lineages with both phenotypically

simple and more complex forms of eusociality should be

studied in their own right, in order to elucidate phenotypic

and genetic changes that occurred in the ancestors of each

lineage, but not as a means to attempt to elucidate general

evolutionary steps that occurred in other lineages. Subse-

quently, the complementary aim of identifying phenotypic

and genetic changes that have repeatedly been involved

during the evolution of eusociality in independent lineages

can be tackled. We emphasize that each of these steps

requires broad sampling, in order to make rigorous

inferences about likely ancestral states (i.e. using formal

phylogenetic comparative methods) [23–26]. Fortunately,

such broad sampling will be facilitated by decreasing

sequencing and computational costs, and advances in phy-

logenomic approaches [53,54], although limited available

phenotypic data (e.g. measures of colony size and other

aspects of social complexity, basic natural history data, etc.)

will likely remain a major constraint.

We have argued that extant eusocial species from lineages

with relatively simple forms of social complexity cannot

be considered to be living representatives of the

long-extinct ancestors of lineages with more complex

forms of eusociality. However, we also emphasize that

decades of research focused on lineages with relatively

simple societies highlight many important insights about

how these societies function and evolve [44,55,56].

Socially polymorphic species, and closely related species

differing in social organization, present especially excit-

ing study systems, for example for elucidating the genetic

underpinnings of variation in social organization within

these lineages [56,57]. We simply emphasize that great

care must be taken before concluding that results from

these lineages inform the genetic basis and evolution of

eusociality in other lineages.

If there is no consistent social ladder, are
there no shared features underlying the
convergent evolution of eusociality?
We have also argued that the specific phenotypic routes

historically taken by different eusocial lineages are likely

to be largely distinct (see Figure 1c,d), so that a social
Current Opinion in Insect Science 2019, 34:123–129 
ladder perspective, assuming more-or-less consistent

steps taken in a progressive way across lineages, is likely

to be incorrect and misleading. That said, we certainly

acknowledge that previous research focused on drawing

general conclusions based on broad comparisons across

eusocial lineages has made important contributions, for

example, by highlighting general principles governing

how societies evolve [1,4,11,44,50,58–61].

Even though the specific phenotypic routes are likely to

be largely distinct between lineages, the convergent

evolution of suites of traits characterizing eusociality

(e.g. reproductive caste) in different insect lineages is

likely to some degree to involve similar genes or gene

pathways. The important empirical question is: to what

degree [50,62]? Each lineage that independently evolved

eusociality shares a common ancestor, and thus shares

common physiological and developmental features.

These shared features have been referred to as

‘groundplans’ [63–65] or ‘toolkits’ [61] and are hypothe-

sized to be important for the convergent evolution of

eusociality. For example, it certainly seems reasonable to

expect that independent origins of an egg-laying caste in

two different insect lineages might both involve changes

in molecular pathways regulating female insect reproduc-

tive development and physiology [63]. Similarly, widely

conserved insect pathways such as insulin/TOR signaling

pathways that mediate physiological responses to the

nutritional environment, and endocrine pathways such

as JH/ecdysone involved in insect development must

be involved to some degree in the evolution of insect

polyphenisms, including social insect queen-worker caste

dimorphism [50,62,66,67].

Indeed, previousstudies found evidence for a small amount

of overlap in genes or functional classes of genes with

caste-associated expression patterns [68]. A recent study

specifically designed to attempt to assess the degree of

overlap in the transcriptomic underpinnings of caste-based

division of labor in the honey bee Apis mellifera and the

pharaoh ant Monomorium phaoronis found that the propor-

tion of shared genes with shared caste-biased expression in

the abdomen was somewhat similar (�0.3 versus �0.4) as

the proportion of shared genes with shared differential

expression across development, which appears striking

given that development is considered to be strongly con-

served [69]. Future studies including many more species

will be necessary to determine how general these patterns

are. Overall, these studies suggest that the convergent

evolution of eusociality has likely involved the recruitment

of some overlapping sets of genes in lineages with

independent origins and elaborations of eusociality,

together with many genes showing lineage-specific pat-

terns of expression as well as taxonomically restricted genes

[70–73]. Such studies point to the potential to elucidate

both thesharedanddistinctgenetic features involved in the

independent origin of eusociality in different lineages.
www.sciencedirect.com
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Conclusions
We have discussed limitations with the approach of

seeking to elucidate general early steps in eusocial

evolution by studying extant species with relatively

simple forms of eusociality. We suggest that there are

no compelling empirical or theoretical reasons to think

that extant species with relatively simple forms of

eusociality can serve as stand-ins to understand the

evolutionary steps taken by the long-extinct ancestors

of species with more complex forms of eusociality.

Instead, we argue that species from all eusocial lineages

should be broadly sampled and studied in their own right.

Phylogenetic comparative methods can make the most of

data from such broad sampling, combined with phyloge-

netic information, to make inferences about ancestral

traits as well as historical evolutionary changes for these

character states [23–26]. Indeed, such phylogenetic

comparative methods have been widely used to elucidate

ancestral states and historical transitions for traits related

to sociality and social complexity in various social insect

lineages, including vespid wasps [9,74], allodapine bees

[52], and ants [49,75], as well as in other social lineages

such as snapping shrimp [76], and primates [77,78]. These

approaches have also increasingly been used to infer and

reconstruct ancestral genome content [79], which might

provide further clues for evolution of shared and distinct

eusocial features across lineages. We also echo previous

authors emphasizing the importance of carefully defining

social complexity based on specific traits, as these traits

often differ between eusocial lineages, and small shifts in

trait definitions can have large impacts on evolutionary

inferences [2,3,10]. Finally, we stress that researchers

must very carefully interpret and present the results of

all such comparative studies, along with assumptions and

caveats when attempting to make general conclusions

about eusocial evolution.
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